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Steady vortex flows past a circular cylinder are obtained numerically as solutions
of the partial differential equation ∆ψ = f(ψ), f(ψ) = ω(1 − H(ψ − α)), where H is
the Heaviside function. Only symmetric solutions are considered so the flow may be
thought of as that past a semicircular bump in a half-plane. The flow is transplanted
by the complex logarithm to a semi-infinite strip. This strip is truncated at a finite
height, a numerical boundary condition is used on the top, and the difference equations
resulting from the five-point discretization for the Laplacian on a uniform grid are
solved using Fourier methods and an iteration for the nonlinear equation. If the area
of the vortex region is prescribed the magnitude of the vorticity ω is adjusted in an
inner iteration to satisfy this area constraint.

Three types of solutions are discussed: vortices attached to the cylinder, vortex
patches standing off from the cylinder and strips of vorticity extending to infinity.
Three families of each type of solution have been found. Equilibrium positions for
point vortices, including the Föppl pair, are related to these families by continuation.

1. Introduction
We study here the classic problem of steady-state, two-dimensional inviscid flow

past a bluff body. To fix ideas we have restricted attention to symmetric flow past
a circular cylinder – all further discussion will be concerned with the equivalent flow
in a half-space with a semicircular bump. We consider flows in which there is either
a single region of constant vorticity or multiple regions in the case where the values
of both the vorticity (−ω) and the stream function on the boundary of the vortex
regions (α) are the same for all regions. There is a surprisingly rich structure for the
possible solutions to this problem, and we believe that the clarity obtained justifies
these restrictions.

Three types of vortex regions occur. These are ‘attached’ vortices in which the
vortex region is connected to the boundary, ‘isolated’ vortices in which the vortex
region stands away from the boundary, and ‘strips’ of vorticity extending to infinity
along the streamline of symmetry. These three types of solutions will correspond to
different choices of the value of the stream function on the boundary of the vortex.
This parameter is prescribed in the partial differential equation satisfied by the stream
function. The boundary of the vortex is found by observing where the stream function
assumes this value.

In much recent literature, Newton’s method has been used to numerically find
steady although possibly time-unstable flow configurations. The numerical method
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used here is unusual in that it can find such flows effectively through fast non-Newton-
based iterations. The mathematical problem is here discretized using direct iteration
along with a fast Poisson solver at each iteration step. In the basic algorithm that we
use the vortex area is fixed and we use this as a continuation parameter in some of
our computations. Area can be related to the physical parameters of circulation and
vorticity, and these are used in an essential way in relating the three kinds of vortices
and in mapping out the set of solutions.

Point vortices play an essential role in a part of our picture, in particular the
solutions known as Föppl vortices and the translating vortex pair. Isolated vortices
with circulation fixed and decreasing area are found to approach point vortices. We
have found families of vortices connecting attached vortices and point vortices.

The solution method that we use might be viewed as ‘vortex capturing’ since no
a priori assumption is made about the nature of the boundary of the vortex region.
The iteration that we use allows arbitrary initial guesses for the vortex, and we have
found only solutions in the families that we describe in our computations.

The problem of finding inviscid flows with regions of constant vorticity has been
well studied, and we will not try to give any general set of references, referring the
reader to the recent book Saffman (1992). On the other hand, we will mention several
works that bear more or less directly on what is reported here. The solution method
that we use is related to that used in Goldshtik (1963). A flow in which there may
also be a vortex sheet was proposed by Taganoff and computed in Sadovskii (1971),
Moore, Saffman & Tanveer (1988) and Chernyshenko (1993). Such flows in the full
half-plane are generally referred to as Sadovskii flows. This model problem has great
significance, in the case in which there is no vortex sheet, in studies of the large
Reynolds number limit of the steady Navier–Stokes equations (Fornberg 1993), and
has been computed in Pierrehumbert (1980), Saffman & Tanveer (1982) and Wu,
Overman & Zabusky (1984). The inviscid flows in these references were computed
using boundary integral methods for determining the boundary of a vortex, a method
related to contour dynamics. It is inherent in these methods that some a priori
assumption must be made about the vortex boundary. Variational methods can also
be used. For theoretical results extensive work has been done by Burton, e.g. Burton
(1989), using ideas proposed in Benjamin (1976). See also Elcrat & Miller (1991) and
Fraenkel & Berger (1974). Computations have been done in Eydeland & Turkington
(1988), Elcrat & Nicolio (1995), and Elcrat & Miller (1989). Results for vortex pairs
in which point vortices are connected with vortices attached to the boundary have
been studied in Norbury (1975) and Wu et al. (1984).

The paper is organized as follows. In § 2 the equations to be solved are given and
the numerical methods used are explained. In § 3 the results for the three kinds of
vortices are presented. In § 4 a discussion of results is given.

2. Formulation of equations and numerical methods
Since the steady two-dimensional Euler equations are equivalent to a functional

dependence between the scalar vorticity and a steam function for the flow (Lamb
1932), we may seek solutions by solving the partial differential equation

∆ψ = f(ψ) (2.1)

for the stream function ψ, with ψ vanishing on the boundary of the body. The
‘profile function’ f in our assumed relationship ω = f(ψ) might be an arbitrary
prescribed function or could be determined from a variational principle (Benjamin
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1976; Burton 1989; Elcrat & Miller 1991). However, we will consider here only the
special case f = ωF(ψ − α), F = 1 − H , H the Heaviside function, where α and
ω > 0 are constants. This corresponds to a constant vorticity −ω in the region
where ψ < α, and irrotational flow elsewhere (this is in agreement with the Prandtl–
Batchelor theorem describing possible limit flows for increasing Reynolds numbers).
If the function f is monotone, iteration is a natural way to seek solutions of (2.1).
An early implementation of this idea was made in Goldshtik (1963). In that work
solutions were found that correspond to vortices attached to the boundary of a
bounded domain. In a recent work, Elcrat & Miller (2000), two of the present authors
have studied families of solutions that contain those of Goldshtik (1963) as well
as isolated vortices and flows with non-zero vorticity on the inflow and outflow
boundaries. An arbitrary monotone f was allowed. The solutions were found by
applying successive approximations to (2.1), and an essential role was played by the
initial guess. As in Goldshtik (1963), the successive iterants could be characterized
in terms of their level sets, and the successive approximations formed a monotone
sequence. In both Goldshtik (1963) and Elcrat & Miller (2000) the boundedness of
the domain is required in order that the mathematical argument be carried out.

We have chosen to focus here on a single geometric configuration, the flow in a
half-space past a semicircular bump. (The flow extends by symmetry to flow past
a circular cylinder.) In choosing this flow domain we have eliminated the need to
map out geometric dependences. The set of solutions found is rich enough to justify
focusing on this single geometry; with more parameters to vary a clear presentation
of results would be much more difficult. In addition, as will be seen below, we can
make a simple coordinate transformation which avoids the need for mesh refinement
or subtraction of singularities at corners in the flow domain in our numerical solution.

For this unbounded domain we know of no mathematical work guaranteeing the
existence of solutions. Furthermore, implementing the monotone iterations described
above proved troublesome and delicate: the iterated vortex regions either filled the
computational domain or disappeared. We have instead used iterations in which ω
is allowed to vary and the area of the vortex region is held fixed. More precisely, we
solve

∆ψn+1 = ωnF(ψn − α), (2.2)

where ωn is chosen so that the area of the vortex,

A = |{ψn < α}|,
is a fixed prescribed value. (This is accomplished in an inner iteration in which ω is
raised or lowered to achieve the correct area in our numerical solution.) A similar
idea was used in Chernyshenko (1993) in computing stratified Sadovskii flows in a
channel. There circulation was fixed in the iterations instead of area. On the basis of
our previous work (Elcrat & Miller 2000) we expect to obtain vortices attached to
the boundary when α = 0, isolated vortices when α < 0, and strips of vorticity along
the entire boundary when α > 0.

We next describe the discretization of the problem.
First we transform the region in the upper half-z-plane exterior to a circle around

the origin of radius 1, by the mapping w = i ln (z), to a semi-infinite strip. Since the
Laplacian, ∆z in the z-plane, transforms to |dw/dz|2∆w , we can write the transformed
differential equation for Ψ (ξ, η) = ψ(x, y) as

∆Ψ = ωF(Ψ − α)e2η.
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Figure 1. The area of the vortex region is approximated by linear interpolation depending on the
values of α−Ψ0 at the corners of each grid rectangle. Two of sixteen possible cases.

The boundary condition on ψ is ψ = ψ0, ψ0 the stream function for potential flow,
on the boundary (where ψ0 = 0) and at infinity. We can write ψ0 = (r − r−1) sin (θ)
in polar coordinates in the z-plane and this transforms to Ψ0 = −2 sinh (η) sin (ξ) in
the w-plane, w = ξ + iη. Then Φ = Ψ −Ψ0 solves a nonlinear Poisson equation with
boundary values zero on the sides and bottom of the strip −π < ξ < 0, 0 < η and at
infinity.

We discretize the Laplacian with the standard five-point stencil using a uniform
mesh in the w-plane. To obtain a finite problem we truncate the strip at a finite height,
and apply at the top a Robin-type numerical boundary condition on the sine transform
coefficients of Φ – a linear relation between Φ̂ and a certain discrete approximation of
∂Φ̂/∂η – which is exact for decaying solutions of the discrete Laplacian on the strip.
The support of the vorticity in any solution obtained must be below the truncation
boundary in order for this to be strictly correct. This can be checked after the fact.

The equation for Φ is solved by a form of successive approximations. This allows
us to use a fast Poisson solver at each iteration step. Also we can avoid having to
deal with the non-differentiability of the right-hand side, as we would have to do if a
form of Newton’s method were used.

A more detailed description of the algorithm will now be given. The vortex area A
and α are prescribed. To start the iterative process an initial guess for Φ0 and ω0 is
given, and the discrete version of

∆Φ = ω0e
−2ηF(Φ0 +Ψ0 − α)

is solved. We then calculate a discrete approximation to

|{φ < α− ψ0}|,
where φ is the corresponding function transplanted to the physical domain. The
description of the details of this are postponed for the moment. We then increase or
decrease ω to get ω1 and the corresponding Φ = Φ1 such that

|{φ1 < α− ψ0}| = A (2.3)

to within some prescribed tolerance εA. Then we begin again with Φ1, ω1 replacing
Φ0, ω0. The process continues until the set of grid points where {Φn+1 < α − Ψ0}
is exactly the same as the set of grid points where {Φn < α − Ψ0}. The algorithm
converges approximately linearly in determining both the vortex region and the
corresponding value of ω.

The calculation of areas is done by linear interpolation. On a grid rectangle there
are sixteen cases corresponding to whether the grid function is greater than or less
than α−Ψ0 at the four corners. Two typical cases are shown in figure 1. After
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linear interpolation on the sides where a sign change occurs we assume that the grid
function is linear in a neighbourhood of these points and calculate accordingly the
appropriate area in the computational domain. The grid in the physical domain is
a polar grid, so the ratio of the area of each physical domain grid ‘rectangle’ to the
area of the corresponding computation grid rectangle can be determined exactly. We
multiply by this ratio on each grid element and add over all grid elements to obtain
the area |{φ < α − ψ0}|. In our computations we have made the tolerance εA used
in assessment of the required area equality (2.3) comparable to the area of one grid
rectangle in the computational domain.

The numerical scheme can be summarized as follows:
(A) Specify α, the desired vortex area A, an error tolerance εA, and make an initial

guess for the vortex region.
(B) Find (by bisection or the secant method) the vorticity level ω and the corre-

sponding solution ψn+1 to (2.2) so that (2.3) is satisfied with tolerance εA .
(C) If the new vortex region {ψn+1 < α} differs from the previous vortex region at

any grid point, return to step B.
Typically, using the secant method, item B requires about four iterations, each

requiring a call to the fast Poisson solver. The number of outer iterations (returning
from C to B) depends on the grid size, and is roughly proportional to the number
of points along each side of the grid. For a 512 by 512 grid, 50 outer iterations are
typical from a very rough initial guess. Each complete solution (with area A specified)
on a 512 by 512 grid therefore typically requires around 200 calls to the fast Poisson
solver. If a previously computed solution for a nearby value of A is used as an initial
guess, then 10 to 15 outer iterations is more typical.

In obtaining some of the results in the next section we use a modification of this
algorithm in which α instead of ω is varied. In this modification of the algorithm the
Poisson equation

∆Φ = ωe−2ηF(Φn +Ψ0 − αn)
is solved only once in each outer iteration. Then α = αn+1 is varied so that the area
equality is satisfied. The number of outer iterations for this version of the algorithm
is on the same order as indicated in the previous paragraph. Since the fast Poisson
solver is the most time-consuming part of the procedure, this modified algorithm is
faster than the original.

The exploration of various families of solutions requires specification of other
parameters, such as vorticity or circulation. The procedure above determines ω as a
function of area A (for fixed α). If we wish to prescribe ω, we use a numerical equation
solver to determine the corresponding A and the associated solution. Further details
will be given in conjunction with the description of results.

We close this section by remarking that the basic algorithm may be thought of
as formally extremizing the Dirichlet integral over functions satisfying the constraint
|{ψ < α}| = A. The vorticity then arises as a Lagrange multiplier for the constraint.

3. Results
We have found several families of symmetric flows past a circular cylinder by

solving the equation (2.1) using the iteration and discretization described above. The
general partial differential equation problem that is being solved can be expected
to have many solutions, and the ones obtained depend on the set of initial guesses
that we have chosen. Nevertheless, there is good reason to believe that the set of
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Figure 2. Attached (α = 0) trailing vortices for various values of A.

all solutions possible is well represented by the set that we will give. To test this we
have given initial guesses in which the vorticity is randomly distributed over the flow
domain. The solutions obtained all belonged to one of the families described below.

In describing the possible solutions to equation (2.1) we note that there is a
symmetry with respect to reflection across the vertical axis: if ψ(x, y) solves equation
(2.1), then ψ(−x, y) also solves equation (2.1) for the same f. In the discussion below,
for each solution in which the vortex region R is not symmetric with respect to the
y-axis, there is another solution for which the vortex region is the reflection of R in
the y-axis. These reflected solutions will not be explicitly mentioned below.

3.1. Attached vortices

For these vortices area is a convenient computational parameter. Our computations
indicate the existence of vortices of arbitrarily large area behind the cylinder. Plots
of the vortex boundaries for several values of A between 0.1 and 60 are given in
figure 2.

We have used a computational rectangle of height π in these calculations and
h = ∆ξ = ∆η = 2−nπ. We have tested the algorithm with n between 8 and 11 and
used n = 8 or n = 9 for the graphs that appear here. The radius of the truncating
boundary circle in the physical domain is then eπ. The boundary condition prescribed
on the truncating boundary was designed so that moving the truncating boundary
further out has no effect on the numerical solution, and we did experiments to verify
that this is indeed the case. For a given A the computed solutions vary slightly
depending on the initial guess. The deviation in the computed attachment points on
the circle and on the x-axis, among the various computed solutions for a given A, was
observed to be at most two grid points for A < 15. For 15 < A < 60, this deviation
is at most three grid points. Thus the maximum error in determining the attachment
point on the circle can be estimated to be 2h for A < 15 and 3h for 15 < A < 60.
In determining the attachment point on the x-axis, these error estimates should be
multiplied by x due to the exponential nature of the coordinate transformation in
the radial direction. There is also some deviation in the computed values of ω: for
A = 20, ω varied between 1.3358 and 1.3399 for n = 8, between 1.3365 and 1.3378
for n = 9, between 1.3368 and 1.3372 for n = 10, and is 1.33689 for n = 11.

Previous calculations of an attached vortex were made by Goldshtik (1981). He
calculated the flow from a given position of the separation point on the cylinder:
the point at an angle π/3 from the positive x-axis. Quantitatively our results do not
agree very closely with his. Resolving the discrepancy between our results and his is
difficult due to lack of information on how his results were obtained.

These attached vortex flows have a limiting nature for large A. First, the attachment
point approaches the top of the circle, as suggested in figure 2. Moreover, as A increases
the vortex regions appear to approach a Sadovskii vortex (without vortex sheet). The
aspect ratio xmax/ymax, where xmax is the distance from the origin to the downstream
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Figure 3. ω, κ and κ2 as functions of A for attached trailing vortices.

Figure 4. Attached symmetric vortices.

Figure 5. Attached symmetric vortices. For each A < 0.7 there are two different solutions with the
vortex attached to the top of the obstacle.

reattachment point, is roughly 3.3 for large areas. This compares well with the value
3.338 given in Wu et al. (1984), Moore et al. (1988) and Chernyshenko (1993) for the
Sadovskii vortex.

The values of ω and the total circulation κ = ωA for this family are plotted as
functions of area A in figure 3. The asymptotically linear relationship that appears
between A and κ2 is consistent with the fact that κ2/A is constant for the Sadovskii
vortex.

There are also two families of symmetric attached vortices. The first of these families
can be parametrized by A for all positive values of A. For large A the boundary is
convex and the aspect ratio asymptotically approaches the same limit as above for
area tending to infinity. As A is decreased a dimple forms, and eventually (at A ≈ 15)
the vortex separates into symmetric parts as shown in figure 4. This will be discussed
further below.

For small values of A there is a second family of symmetric vortices attached to
the top of the circle. These are shown in figure 5. For each value of A < 0.7 there
are two solutions in the family. At one end of the family, for A < 0.2 the vortex
support consists of two symmetric regions. A similar looking family of vortices for
non-symmetric flow past a circular cylinder with a single attached vortex (computed
using boundary collocation) is given in Giannakidis (1992).
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3.2. Isolated vortices

Before describing the isolated vortices it is helpful to note the possible stationary
locations for a point vortex. The complex potential for flow past a semicircular bump
of radius a in the upper half-plane with a single point vortex located at z0 and
circulation κ is given by

w = U

(
z +

a2

z

)
+ i

κ

2π
log

(
z − z0

z − z̄0

z − a2/z0

z − a2/z̄0

)
. (3.1)

The condition for stationarity is

d

dz

[
w − iκ

2π
log (z − z0)

]∣∣∣∣
z=z0

= 0.

One set of solutions z0,κ is given by points on r2 − a2 = 2ry with circulation
κ = 4πUy(1 − a4/r4). These are the well-known Föppl vortex locations shown in
figure 6(a).

A second family of stationary point vortices can be obtained by setting z0 = bi,
b > a in (3.1). The equation obtained reduces to

U

(
1 +

a2

b2

)
=

κ

2π

(
1

2b
+

2a2b

b4 − a4

)
.

For any b > a we can choose κ by this equation to obtain a solution. The locus is
shown in figure 6(b). To understand the significance of this solution we can set a = 0,
and observe that we obtain a vortex translating with speed U and circulation 4πbU,
another well-known set of point vortices.

In addition to these two families of single stationary point vortex locations, we
note that for small κ there is a symmetric pair of stationary point vortices, each with
circulation κ, with one vortex near each of the corners determined by the intersection
of the circle and the x-axis (Miller 1996). The locus of such symmetric pairs can be
continued to obtain the locus shown in figure 6(c).

For each of these stationary point vortex locations, either single vortex or symmetric
pair, there is a family of isolated vortices with the same total circulation κ = ωA as
the point vortex. To obtain each member of these families numerically we use the
modification of the algorithm described near the end of § 2: fix ω and let α < 0 vary
in the inner iteration in order to keep A fixed. By then increasing A incrementally
with κ = ωA fixed, we may obtain a family of fixed-circulation vortices. Thus we
have obtained three two-parameter families of isolated vortices, each parametrized
by κ and α: trailing vortices desingularizing the Föppl point vortices (figure 7),
connected symmetric vortices desingularizing point vortices on the y-axis (figure 8),
and vortices consisting of two components which desingularize the symmetric vortex
pairs (figure 9).

For A small (−α large) desingularizations of a point vortex have been obtained
elsewhere by other numerical methods (Elcrat & Miller 1989; Eydeland & Turkington
1988). We can continue these desingularizations to maximal values of α 6 0. Our
calculations indicate that for each of the Föppl point vortices the corresponding
family of isolated vortices contains solutions for all values of α, −∞ < α 6 0; i.e.
there is a continuous family of isolated vortices, with κ fixed, connecting the point
vortex to one of the attached vortices shown in figure 2. For point vortices on the
y-axis there is a κ1 (≈ 28.5) such that for all κ > κ1 the point vortex can be connected
to one of the symmetric attached vortex regions shown in figure 4, and there is a
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Figure 6. Point vortices. Circulation κ as a function of position for (a) Föppl point vortices;
(b) point vortices on the y-axis; (c) symmetric point vortex pairs.

Figure 7. A sequence of vortex regions, with κ = 25, desingularizing a Föppl point vortex.

κ2 (≈ 7.8) such that for all 0 < κ < κ2 the point vortex can be connected to one of
the symmetric attached vortex regions shown in figure 5, while for κ2 < κ < κ1 there
is α(κ) < 0 such that the corresponding family of isolated vortices contains solutions
only for −∞ < α < α(κ).

Symmetric point vortex pairs can likewise be joined via this continuation process
to each of the disconnected symmetric attached vortices shown in figure 4. However,
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Figure 8. A sequence of vortex regions, with κ = 50, desingularizing
a point vortex on the y-axis.

Figure 9. A sequence of double vortex regions, with κ = 27, desingularizing
a symmetric point vortex pair.

Figure 10. Streamline plot for the attached trailing vortex with κ = 25.

only a short range of that end of the locus of symmetric point vortices (figure 6c)
which ends at the top of the circle can be desingularized all the way to an attached
vortex. One such attached vortex, with two components, appears in figure 5.

Figures 10 and 11 show streamline plots for respectively the attached vortex and for
a slight desingularization of the Föppl point vortex (−α large) with the same value of
κ. In all figures the dashed lines are streamlines and the solid lines (also streamlines)
represent the boundaries of the vortex regions. The wake region is definitely more
elongated in attached vortex flow. Figure 12 shows streamline plots for flows near the
two extremes of the family in figure 9. In this case the recirculant streamlines are not
only more elongated for the attached vortex flow, but even have a different topology
than in the case of the point vortex flow with the same κ.

Nearly all the isolated vortices we have found belong to one of the families just
described. However it appears that not all attached vortices can be joined by a
continuous constant-circulation family to a point vortex or vortex pair. The largest of
the attached disconnected symmetric vortices has a circulation slightly larger than 29.
For the symmetric point vortex pairs the circulation varies from 0 to about 28. For
28 < κ < 29, there are isolated disconnected symmetric vortices only for α(κ) < α < 0.

It should be pointed out that there are stationary configurations of point vortices for
which we have not presented desingularizations. For example, there are unsymmetric
pairs of corner vortices with κ1 6= κ2, κ1 and κ2 both positive (Miller 1996). There are
also configurations of three vortices, with all positive circulation, with two symmetric
vortices near the corners and a third vortex on the axis. (For example, an infinitesimally
weak vortex can be placed at the stagnation point above the body in figure 12(b), and
its strength can then be increased.) In neither of these cases are there desingularizations
which are solutions of (2.1) with f = ωF(ψ − α), F = 1−H and single, global values
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Figure 11. Streamline plot for trailing vortex with κ = 25 and α = −6.4.

(a)

(b)

Figure 12. Streamline plots for two flows with the same total circulation, κ = 27.

of α and ω. In addition there are configurations of two or more point vortices with
circulations of different sign (Miller 1996).

3.3. Vortices with support extending to infinity

These are obtained from solutions of (2.1) with α > 0. Since the vortices are unbounded
neither area nor circulation is defined. For want of a better choice, we have chosen
area inside the computational domain as a computational parameter. Our basic
algorithm finds ω as a function of A, but we wanted to fix the physical parameter ω.
This was accomplished by making the algorithm into a Fortran function and using
the equation solving routine of Brent (see Forsythe, Malcolm & Moler 1977). For
some of these computations we doubled the height of the computational rectangle,
which corresponds to increasing the radius of the truncating boundary circle from eπ

to e2π. This doubling of the computational domain resulted in no discernable change
in the solution graphs in the figures that follow, but was necessary to obtain the
accuracy needed in determining the relationship between α and ω in figure 14 below.

For fixed ω we have found two families of symmetric solutions for positive α. For
the first of these families the limiting flow as α → 0 is the flow with no vortex, i.e.
potential flow. This family is illustrated in figure 13(a).

For the second symmetric family, shown in figure 13(b), the α = 0 solution is the
symmetric attached vortex with the same ω. We can also find a family continued
from an attached vortex behind the cylinder. This is illustrated in figure 13(c).

For all three families the continuation cannot be carried out past a critical value
of α which depends on ω but is the same for all three families. Thus the set of all
solutions appears to be connected in some sense. A graph of the maximal α as a
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(a)

(b)

(c)

Figure 13. Three families of infinite vortices with ω = 1: (a) perturbations of potential flow;
(b) perturbations of a symmetric attached vortex; (c) perturbations of a trailing attached vortex.
For all three families α varies between 0 and 0.5. The α = 0.5 vortex region is the same for all
three families.
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Figure 14. There are vortices with infinite support for parameters (ω, α) in the first quadrant
below the solid curve. The dashed curve is α = 1/(2ω).

Figure 15. Streamline plot for the maximal α when ω = 1.

function of ω is given in figure 14. Calculations indicate that each attached vortex
shown in figures 2 and 4, but none of those in figure 5, can be perturbed to a flow
with unbounded vortex support.

A streamline plot for the solution for the maximal value of α is given in figure 15.
It appears that for all α > 0 there is recirculation near each of the corners where
the semicircle intersects the x-axis. For the first of these families these regions of
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Figure 16. The α = 0.2 solution from the first ω = 1 family shows
a small recirculation region in the corner.

Figure 17. Streamline plot for the second family of infinite vortices with ω = 1, α = 0.3.

Figure 18. Streamline plot for the unsymmetric vortex with ω = 1, α = 0.25.

recirculation may be very small, as in figure 16. For the second family the region of
recirculating flow gets smaller as α increases. Figure 17 shows a typical streamline plot.
For the unsymmetric family (figures 13c and 18), as α increases the recirculation region
behind the semicircle gets smaller while the recirculation region in front increases
until symmetry is reached at the maximal value of α.

Analysis of the corresponding flows when there is no circle may help shed some
light on our observations concerning these vortices. For the upper half-plane the
stream function ψ for such flows will be given by

ψ =

{
uwy + 1

2
ωy2, ψ < α,

Uy + k, ψ > α,

where the constant uw is the velocity along the x-axis and U is the potential flow
velocity. Differentiability of ψ implies that u2

w = U2 − 2αω. Taking U = 1, it follows
that there are two solutions for α < 1/(2ω). (Figure 14 shows that the set of (α, ω)
for which there are solutions with positive α is nearly the same with or without the
circular obstacle for ω < 1, the presence of the obstacle restricting the range of α
as ω increases.) The solutions with uw > 0 and uw < 0 correspond respectively to
the first and second families of solutions shown in figure 13. The third family in
figure 13 arises from the matching of a solution from the first family in the far-field
upstream with a solution from the second family in the far-field downstream, the
presence of the obstacle causing a change in the direction of the flow along the
x-axis. This provides some explanation of the perhaps surprising fact that all three
families (four counting the reflection of the third family) come together at the same
maximal α.
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Point vortices Isolated vortices Attached vortices Infinite vortices

Figure 19. One-parameter families of point vortices and attached vortices and related two-parameter
families of isolated and infinite vortices. The third family of infinite vortices are perturbations of
potential flow.

4. Discussion
An attempt has been made to give a complete catalogue of single vortex flows past

a semicircular bump in a half-space. Figure 19 gives a summary of the solutions we
have obtained. Each stationary single point vortex or symmetric point vortex pair can
be desingularized to a family of isolated vortices (α < 0) with the same circulation.
In many cases (for those point vortices in the ranges indicated by larger dots in
figure 19) the resulting family of fixed-circulation isolated vortices can be continued
to an attached vortex (α = 0). Except for the small family of vortices which are
attached entirely to the semicircle (those in figure 5), each attached vortex can be
perturbed to a family of unbounded vortices for a certain range of α > 0.

The limiting flow if viscosity tends to zero for steady, viscous flow past a circu-
lar cylinder is believed to be a scaled version of Sadovskii flow with length and
width proportional to the Reynolds number (Fornberg 1985; Chernyshenko 1988;
Chernyshenko & Castro 1993). The possible role of the flows described here as inter-
mediate cases in this limit or as the result of such things as blowing or suction in the
viscous flow lie outside the scope of this paper.

The tools we have used can be generalized in many directions. Other shapes than a
circle and finite dimensions for the flow domain can be introduced. This requires only
a different conformal mapping and a careful treatment of possible singularities of the
stream function at corners of the flow domain in order that numerical accuracy be
retained. Asymmetry and/or multiple vortices require a more general algorithm. In
particular, multiple area constraints will have to be simultaneously satisfied if several
vorticities are to be obtained. We plan to return to this interesting problem.

As discussed in Elcrat & Miller (2000), the corresponding axisymmetric problem
lends itself to similar methods.

The authors thank S. I. Chernyshenko for several helpful comments and suggestions.
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